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It used to be good enough to bound absolute errors of matrix eigenvalues and
singular values. Not any more. Now it is fashionable to bound relative errors.
We present a collection of relative perturbation results which have emerged
during the past ten years.

No need to throw away all those absolute error bounds, though. Deep down,
the derivation of many relative bounds can be based on absolute bounds. This
means that relative bounds are not always better. They may just be better
sometimes - and exactly when depends on the perturbation.
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1. Introduction

Are you concerned about accuracy of matrix eigenvalues or singular values,
especially the ones close to zero? If so, this paper is for you!

We present error bounds for eigenvalues and singular values that can be
much tighter than the traditional bounds, especially when these values have
small magnitude. Our goal is to give some intuition for what the bounds
mean and why they hold.

Suppose you have to compute an eigenvalue of a complex square matrix
A. Numerical software usually produces a number A that is not the desired
eigenvalue. So you ask yourself how far away is A from an eigenvalue of A?
If A was produced by a reliable (i.e., backward stable) numerical method,
there is a round-off error analysis to assure you that A is an eigenvalue of
a nearby matrix A + E, where E is small in some sense. Then you can
use perturbation theory to estimate the error in A. For instance, when
A is diagonalizable, the Bauer-Fike theorem bounds the absolute distance
between A and a closest eigenvalue A of A by

| A - A | < « ( X ) | | £ | | , (1.1)

where K(X) = \\X\\ II-X""1!! is the condition number of an eigenvector matrix
X of A

The quantity |A—A| represents an absolute error. Traditional perturbation
theory assesses the quality of a perturbed eigenvalue by bounding absolute
errors. However, there are practical situations where small eigenvalues have
physical meaning and should be determined to high relative accuracy. Such
situations include computing modes of vibration in a finite element context,
and computing energy levels in quantum mechanical systems (Demmel, Gu,
Eisenstat, Slapnicar, Veselic and Drmac 1997, Section 1). Absolute error
bounds cannot cope with relative accuracy, especially when confronted with
small eigenvalues or singular values. The following section explains why.

1.1. Why absolute bounds don't do the job

If we want relative accuracy, we need relative error bounds. The simplest
way to generate a relative error bound is to divide an absolute error bound
by an eigenvalue. For instance, dividing the absolute error bound (1.1) by
a nonzero eigenvalue A produces the relative error bound

| A - A | | |S | |

|A| - |A| •

Unlike the absolute bound, though, the relative bound depends on A. This
has several disadvantages. First, each eigenvalue has a different relative
bound. Second, the relative bound is smaller for eigenvalues A that are
large in magnitude than for those that are small in magnitude. Third, the
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relative bound can be pessimistic for eigenvalues of small magnitude, as the
following example illustrates.

Example 1.1 The mere act of storing a diagonal matrix

. A l

A= '

in floating point arithmetic produces a perturbed matrix

A + E= {

Xn(l + en)j

where |ej < e and e > 0 reflects the machine accuracy. According to the
absolute perturbation bound (1.1), the error in an eigenvalue A of A + E is
bounded by

min |Aj — Al < \\E\\ = max \Xk^k\ < e max |A&|.
i k k

This bound is realistic for eigenvalues of largest magnitude: if A is closest
to an eigenvalue Amax of largest magnitude among all eigenvalues of A, then

|Amax ~ AI

Since the relative error in all eigenvalues does not exceed e, the bound is
tight in this case.

However, the bound is too pessimistic for eigenvalues of smallest mag-
nitude: if A is closest to an eigenvalue Am;n of smallest magnitude among all
eigenvalues of A, then

l̂ min ^| , l̂ m&x
|Amin| -e]X~\-

The bound is much larger than e when the magnitude of the eigenvalues
varies widely. Since the relative error does not exceed e, the bound is not
tight. •

There are algorithms whose relative error bounds do not depend on the
eigenvalues. These algorithms compute all eigenvalues or singular values to
high relative accuracy, even those of small magnitude: the dqds algorithm for
singular values of bidiagonal matrices (Fernando and Parlett 1994, Parlett
1995), for instance, as well as Jacobi methods for eigenvalues of symmet-
ric positive-definite matrices and for singular values (see Demmel (1997),
Section 5.4.3, and Mathias (1995)). Absolute perturbation bounds cannot
account for this phenomenon.
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Absolute error bounds are well suited for describing the accuracy of fixed
point arithmetic. But fixed point arithmetic has been replaced by floating
point arithmetic, especially on general purpose machines where many ei-
genvalue and singular value computations are carried out nowadays. The
accuracy of floating point arithmetic is best described by relative errors.
In the absence of underflow and overflow, a number a is represented as a
floating point number

a = a(l + ea), where \ea\ < e,

and e > 0 reflects the machine accuracy. In IEEE arithmetic, for instance,
e £3 10~7 in single precision and e w 10~16 in double precision. Therefore
the accuracy of floating point arithmetic can be described by relative error
bounds of the form

a — a\ < \a\ e or |d — a\ < \a\ e.

Absolute error bounds cannot model this situation.
And even if you never require high relative accuracy from your small ei-

genvalues or singular values, you can still profit from it. It turns out that
intermediate quantities computed to high relative accuracy can sometimes
speed up subsequent computations. For instance, computing eigenvalues of
a real, symmetric, tridiagonal matrix to high relative accuracy can accelerate
eigenvector computations because the time-consuming process of orthogon-
alizing eigenvectors can be shortened or even avoided (Dhillon, Fann and
Parlett 1997, Dhillon 1997).

Now that we have established the need for 'genuine' relative error bounds
beyond any shadow of a doubt, it's time to find out what kind of relative
bounds are out there.

1.2. Overview

Relative error bounds have been derived in the context of two different
perturbation models.

• Additive perturbations (Sections 2, 3, 4) represent the perturbed matrix
as A + E.

• Multiplicative perturbations (Sections 5, 6, 7) represent the perturbed
matrix as D1AD2, where D\ and D2 are nonsingular matrices.

The traditional absolute error bounds are derived in the context of addit-
ive perturbations.

We group the bounds for eigenvalues (Sections 2, 5) and for singular
values (Sections 3, 6) according to a loose order of increasing specialization,
as follows.
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• Bauer-Fike type. Two-norm bounds on the distance between a per-
turbed eigenvalue and a closest exact eigenvalue.

• Hoffman- Wielandt type. Probenius norm bounds on the sum of squares
of all distances between perturbed eigenvalues and corresponding exact
eigenvalues, where perturbed and exact eigenvalues are paired up in a
one-to-one fashion. Similar for singular values.

• Weyl type. Two norm bounds on the largest distance between a per-
turbed eigenvalue and the corresponding exact eigenvalue, where the
ith largest perturbed eigenvalue is paired up with the zth largest exact
eigenvalue. Similar for singular values.

There are several different ways to normalize an absolute error |A — A)
and turn it into a relative error. We present bounds for the relative error
measures

| A - A | |A-A| |A-A|

where 1 < p < oo is an integer. For instance, the traditional relative error
|A — A|/|A| can be larger or smaller than the second error measure, while it
is never smaller than the third. Detailed relationships among the different
measures are discussed by Li (1994a, Section 2). Since the measures are
essentially proportional to each other we disregard any differences among
them.

Sections 4 and 7 discuss applications of additive and multiplicative per-
turbations.

1.3. Notation

We use two norms: the two-norm

\\Ax\\
\\A\\ = max , where

xtO \\x\\

and the superscript * denotes the conjugate transpose; and the Probenius
norm

where Oij are the elements of the matrix A. The identity matrix of order n
is

/ = ••• =(e i . . . c )

with columns e<.
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For a matrix A we denote by range(^4) its column space, A-1 its inverse
and A^ its Moore-Penrose inverse. The absolute value matrix \A\ has ele-
ments \aij\. A matrix inequality of the form \A\ < \B\ is meant element-wise,
that is, |ajj| < \bij\ for all i and j .

2. Additive perturbations for eigenvalues

Let A be a complex square matrix. We want to bound the absolute and
relative errors in the eigenvalues of the perturbed matrix A + E. In the
process we show that relative error bounds are as natural as absolute error
bounds, and that many relative bounds are implied by absolute bounds.

2.1. Bauer-Fike-type bounds for diagonalizable matrices

The Bauer-Fike theorem bounds the distance between an eigenvalue of A+E
and a closest eigenvalue of A. The matrix A must be diagonalizable, while
A + E does not have to be.

Let A = XAX~^ be an eigendecomposition of A, where

and \i are the eigenvalues of A. Let A be an eigenvalue of A + E.
The Bauer-Fike theorem for the two-norm (Bauer and Fike 1960, The-

orem Ilia) bounds the absolute error,

min |Aj-A| < K(X) \\E\\. (2.1)
%

The relative version of the Bauer-Fike theorem below requires in addition
that A be nonsingular.

Theorem 2.1 If A is diagonalizable and nonsingular, then

where K(X) = \\X\\ UX"1)!.

Proof. (See Eisenstat and Ipsen (1997), Corollary 2.2.) The idea is to
'divide' by the eigenvalues of A and apply the absolute error bound (2.1).

Write (A + E)x = Xx as

1 - A~lE)x = x.

This means that 1 is an eigenvalue of \A~l — A~lE. The matrix \A~l has
the same eigenvector matrix as A and its eigenvalues are \ / \ . Apply the
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Bauer-Fike theorem (2.1) to \A~* and to the perturbed matrix XA'1 —
A~XE. •

If we interpret the amplifier K(X) as a condition number for the eigenval-
ues of A, then absolute and relative error bounds have the same condition
number. In the eyes of the Bauer-Fike theorem, this means an eigenvalue is
as sensitive in the absolute sense as it is in the relative sense. A comparison
of the absolute bound (2.1) and the relative bound in Theorem 2.1 shows
that the absolute error is bounded in terms of the absolute perturbation
E, while the relative error is bounded in terms of the relative perturbation
A~lE.

But A~lE is not the only way to express a relative perturbation. Why
keep A~l on the left of El Why not move it to the right, or distribute it
on both sides of El Splitting A = A\A2 and sandwiching E between the
two factors, like A±1EA2~

1, results in undreamt-of possibilities for relative
perturbations.

Theorem 2.2 Let A be diagonalizable and nonsingular. If A = A1A2
where A\ and A2 commute, then

^ ~ A l < K(X) WA
I A|

Proof. (See Eisenstat and Ipsen (1997), Corollary 2.4.) The idea is to apply
Theorem 2.1 to the similarity transformations

A2AA21 and A2(A + E)A21.

Fortunately, similarity transformations preserve eigenvalues. And the com-
mutativity of A\ and A2 prevents the similarity from changing A,

A2 A A^1 = A2 (A1A2) A^1 = A2Ai = A\A2 = A.

Therefore we retain the condition number of the original eigenvector matrix
X. a

When A\ = A and A2 = I, Theorem 2.2 reduces to the relative bound in
Theorem 2.1. Setting A\ = I and A2 = A gives (Eisenstat and Ipsen 1997,
Corollary 2.5)

min|A^~A|
 <K(X)\\EA-1\\.i I Aj|

This bound includes Theorem 3.17 of Veselic and Slapnicar (1993) as a
special case. Another popular choice for A\ and A2 is a square root A1!2 of
A. In this case Theorem 2.2 gives (Eisenstat and Ipsen 1997, Corollary 2.6)

l^ f^ i < K(X) WA
W\
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2.2. Bauer-Fike-type bounds for normal matrices

Normal matrices have unitary eigenvector matrices but, in contrast to Her-
mitian or real symmetric matrices, their eigenvalues are not necessarily real.
Normal matrices include Hermitian, skew-Hermitian, real symmetric, real
skew-symmetric, diagonal, unitary and real orthogonal matrices.

Since the condition number of a unitary eigenvector matrix equals one, the
Bauer-Fike theorem applied to a normal matrix A simplifies. The absolute
error bound (2.1) becomes

i - A l ^ \\E\\,
i

while the corresponding relative bound requires again that A be nonsingular.

Theorem 2.3 Let A be normal and nonsingular. If A = A\A2, where A\
and A2 commute, then

Proof. This follows immediately from Theorem 2.2. •

Therefore eigenvalues of normal matrices are well conditioned, in the ab-
solute as well as in many relative senses. The relative bound in Theorem 2.3
is tight for diagonal matrices A and component-wise perturbations E, like
those in Example 1.1.

For the relative bound to remain in effect, A\ and A2 have to commute.
Our choices for 'commuting factorizations' have been, so far:

(A1,A2) = (A, I), (Al,A2) = (I, A), (Al,A2) = {A1'2, A1'2).

But since A is normal there is another commuting factorization: the polar
factorization. Every square matrix A has a polar factorization A = HU,
where H = (AA*)1/2 is Hermitian positive-semidefinite and U is unitary
(Horn and Johnson 1985, Theorem 7.3.2). The matrix H is always unique,
while U is only unique when A is nonsingular. In particular, when A is
Hermitian positive-definite, H = A and U is the identity. We use the fact
that polar factors of normal nonsingular matrices commute in the following
sense (Eisenstat and Ipsen 1997, Lemma 3.2):

HU = UH = H1/2UH1/2.

Theorem 2.4 If A is normal and nonsingular, with Hermitian positive-
definite polar factor H, then

|Aj
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Proof. (See Eisenstat and Ipsen (1997), Theorem 3.3.) As A = Hl/2UHll2,
we can set Ax = HX/2U and A2 = if1/2 in Theorem 2.3 to get

WA^EA^W = \\U*H-l/2EH-l'2\\ = \\H~ll2EH-l'2\\.

a
Therefore the eigenvalues of a normal matrix have the same relative error

bound as the eigenvalues of its positive-definite polar factor. This suggests
that the eigenvalues of a normal matrix are as well conditioned as the ei-
genvalues of its positive-definite polar factor. More generally we conclude
that eigenvalues of normal matrices are no more sensitive than eigenvalues
of Hermitian positive-definite matrices.

2.3. Hoffman-Wielandt-type bounds for diagonalizable matrices

The Hoffman-Wielandt theorem establishes a one-to-one pairing between
all eigenvalues of A and A + E and bounds the sum of all pairwise distances
in the Frobenius norm. This requires not only A but also A + E to be
diagonalizable.

Let A and A + E be diagonalizable matrices with eigendecompositions
A = XAX~l and A + E = XAX'1, respectively. The eigenvalues are

The extension of the Hoffman-Wielandt theorem from normal to diag-
onalizable matrices (Eisner and Friedland 1995, Theorem 3.1) bounds the
absolute error,

\
(2.2)

for some permutation r. The condition numbers K(X) and K{X) are ex-
pressed in the two-norm to make the bound tighter, since the two-norm
never exceeds the Frobenius norm.

We can obtain a relative Hoffman-Wielandt-type bound from a stronger
version of (2.2) that deals with eigenvalues of matrix products. To this
end write the perturbed matrix as AC + E, where C must have the same
eigenvector matrix as AC + E. The bound (2.2) is the special case where
C = I. The eigendecomposition of C is

= XrX~1, where T =

7n,
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The eigendecompositions of A and the perturbed matrix remain the same:

A = XAX~\ AC + E = XAX'1.

The stronger Hoffman-Wielandt-type bound given below bounds the sum
of squares of absolute errors in the products of the eigenvalues of A and C.

Lemma 2.5 If A, C and AC + E are diagonalizable, then there exists a
permutation r such that

* ^ I^i7r(i) - Ar(j)|
2 < «(X) K(X) \\E\\F.

Proof. See Eisenstat and Ipsen (1997), Theorem 5.1. •

Now we are ready for the relative bound. The stronger absolute bound in
Lemma 2.5 implies a relative version of the original Hoffman-Wielandt-type
bound (2.2), provided A is nonsingular.

Theorem 2.6 Let A and A + E be diagonalizable. If A is nonsingular
then there exists a permutation r such that

t \T{1)\\

\Ji=i

Proof. (See Eisenstat and Ipsen (1997), Corollary 5.2.) Since A~l{A+E) -
A~~1E = I we can set

Then A is diagonalizable with eigenvector matrix X and eigenvalues A"1; C
is diagonalizable with eigenvector matrix X and eigenvalues Xf, and AC +
E = XIX~1 is diagonalizable, where the eigenvalues are 1 and one can
choose X as an eigenvector matrix. Applying Lemma 2.5 to A, C and E
gives

£ lAT1^) - 1|2 < K{XfK{Xf\\A-lE\\2
F.

i= l

•

2.4- Hoffman-Wielandt-type bounds for Hermitian matrices

When A and A + E are Hermitian, the permutation in the Hoffman-Wie-
landt theorem is the identity, provided exact and perturbed eigenvalues are
numbered as

Xn < • • • < Ai, An < • • • < Ai.
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The Hoffman-Wielandt theorem for Hermitian matrices (see Bhatia (1997),
Exercise III.6.15, and Lowner (1934)) bounds the absolute error by

(2.3)

The relative bound below requires in addition that A and A + E be positive-
definite.

Theorem 2.7 If A and A + E are Hermitian positive-definite, then

\
r |A' Xl{2 <

i=\

Proof. See Li (1994a), Theorem 3.2, and Li and Mathias (1997), Proposi-
tion 3.4'. •

As a consequence, a small HA^^-EM"1/2!^ guarantees a small eigenvalue
error. If one does not mind dealing with majorization theory, one can de-
rive bounds that are stronger than Theorem 2.7 and hold for any unitarily
invariant norm (Li and Mathias 1997, Proposition 3.4, (3.19)).

2.5. Weyl-type bounds

Weyl's perturbation theorem (Bhatia 1997, Corollary III.2.6) bounds the
worst distance between the ith eigenvalues of Hermitian matrices A and
A + E in the two-norm

max \\i-\\< \\E\\. (2.4)
<i<

The absolute bound (2.4) implies a relative bound, provided that A is
positive-definite. There is no restriction on E other than being Hermitian.

Theorem 2.8 Let A and A+E be Hermitian. If A is also positive-definite,
then

Proof. (See Eisenstat and Ipsen (1997), Corollary 4.2, and Mathias (19976),
Theorem 2.3.) We reproduce the proof from Eisenstat and Ipsen (1997)
because it explains how the absolute bound (2.4) implies the relative bound.
Fix an index i. Let x be an eigenvector oi A + E associated with A;, that is,

(A + E)x = XiX.

Multiplying (XJ — E)x = Ax by A~xl2 on both sides gives

(A + E) z = z,
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where

A = \A-\ E = -A-l'2EA-1'2, z = Al'2x.

Hence 1 is an eigenvalue of A + E.
We show that it is actually the (n — i + l)st eigenvalue and argue as in

the proof of Theorem 2.1 of Eisenstat and Ipsen (1995). Since \ is the ith
eigenvalue of A + E, 0 must be the ith eigenvalue of

(A + E)- \J = A1'2 (I-A-E) A1'2.

But this is a congruence transformation because square roots of positive-
definite matrices are Hermitian. Congruence transformations preserve the
inertia. Hence 0 is the zth eigenvalue of / — A — E, and 1 is the (n — i + l)st
eigenvalue of A + E.

Applying Weyl's theorem (2.4) to A and A + E gives

max
A,;

flj < \\E\\ =

where [ij are the eigenvalues of A + E. When j = n — i + 1, then /J,J — 1
and we get the desired bound. •

The following example illustrates what the relative bound in Theorem 2.8
looks like when E is a component-wise relative perturbation.

Example 2.1 (See Mathias (19976), pp. 6, 7.) Let's first subject a single
diagonal element of a Hermitian positive-definite matrix A to a component-
wise relative perturbation. Say, a,jj is perturbed to ajj(l+e). The perturbed
matrix is A + E, where E = eejej and ej is the jth column of the identity
matrix. Then

= e A ^"e^A A/" = e

where (A~1)jj is the jth diagonal element of A~l (which is positive since A
is positive-definite). The relative error bound in Theorem 2.8 is

|Aj Aj
< |e| (A-1)

This means that a small relative error in a diagonal element of a Hermitian
positive-definite matrix causes only a small relative error in the eigenvalues
if the corresponding diagonal element of the inverse is not much larger than
one.

Next we'll subject a pair of off-diagonal elements to a component-wise
relative perturbation. Say, a^ and ajy are perturbed to ajk(l + e) and
akj(l + e), respectively. The perturbed matrix is A + E, where E = e(eje£ +
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). In this case we get

<2|e|

The relative error bound in Theorem 2.8 becomes

ma* ^—^ < 2|e

This means that a small relative error in a pair of off-diagonal elements of
a Hermitian positive-definite matrix causes only a small relative error in
the eigenvalues if the product of the corresponding diagonal elements in the
inverse is not much larger than one. •

The bound below, for a different error measure, is similar to the Frobenius
norm bound in Theorem 2.7.

Theorem 2.9 If A and A + E are Hermitian positive-definite then

\h^M < WA

Proof. See Li (1994a), Theorem 3.2, and Li and Mathias (1997), Proposi-
tion 3.4'. •

2.6. Weyl-type bounds for more restrictive perturbations

It is possible to get a Weyl-type bound for eigenvalues of Hermitian matrices
without officially asking for positive-definiteness. The price to be paid,
however, is a severe restriction on E to prevent perturbed eigenvalues from
switching sign.

Theorem 2.10 Let A and A + E be Hermitian. If 0 < ej < eu and

ti x* Ax < x*Ex < eu x*Ax for all x,

then

ei Xi < \i — X{ < eu Xi, 1 < i < n.

Proof. (This is a consequence of Barlow and Demmel (1990), Lemma 1.)
The Minimax principle for eigenvalues of Hermitian matrices (Bhatia 1997,
Corollary III. 1.2) implies

X J\X X J\.X
Xi = max mm = mm ,

dim(5)=i xeS X*X x£S0 X*X

for some subspace So of dimension i. Then

- . x*{A + E)x . x*{A + E)x
X{ = max min — — > mm

*ax mn mm
dim(S)=i xeS X*X x€S0 X*X
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for some XQ 6 SQ. The above expression for Aj and the assumption imply

x*0(A + E)xQ . x*Ax x*0Ax0> mm — h ei— > Xt + e/Aj,
X€S0 X*X

where we have also used the fact that e; > 0. Hence e/Aj < A, — Aj. The
upper bound is proved similarly using the characterization

x* Ax
min maxXi mi m a x .

dim(S)=n-i+l xeS X*X

•
Therefore the relative error in the eigenvalues lies in the same interval as

the relative perturbation. The relative error bound in Theorem 2.10 implies

(1 + e,) Xt < Xi < (1 + eu) Xi,

where e; and eu are positive. Hence Xi has the same sign as Xi, and |Aj| > |A;|.
Thus the restriction on the perturbation is strong enough that it not only
forces A and A+E to have the same inertia, but it also pushes the perturbed
eigenvalues farther from zero than the exact eigenvalues.

The restriction on the perturbation in the following bound is slightly
weaker. It uses the polar factor technology from Theorem 2.4.

Theorem 2.11 Let A and A + E be Hermitian. If H is the positive-
semidefinite polar factor of A and if, for some 0 < e < 1,

\x*Ex\ < e x*Hx for all x,

then

Proof. This is a consequence of Veselic and Slapnicar (1993), Theorem 2.1.
The assumption implies

x*(A - eH)x < x*(A + E)x < x*(A + eH)x.

If A = XAX* is an eigendecomposition of A, then, because A is Hermitian,
the polar factor is H = X\K\X*, where |A| is the matrix whose elements are
the absolute values of A. Hence A and H have the same eigenvectors. A
min-max argument as in the proof of Theorem 2.10 establishes

Xi — e|Aj

•
tYve ie\atwe enot m tlae e\geiwa\ues is smaW ii the teVatwe per-

turbation with regard to the polar factor is small. Since 0 < e < 1 the
relative error bound implies that Aj has the same sign as Aj. Hence the
assumptions in Theorem 2.11 ensure that A + E has the same inertia as A.
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Theorem 2.11 applies to component-wise relative perturbations. Matrix
inequalities below of the form |.E| < e\A\ are to be interpreted element-wise.

Corollary 2.12 Let A and A + E be Hermitian, and \E\ < e \A\ for some
e > 0. If if is the positive-definite polar factor of A and, for some rj > 0,

X|*|J4||X| < r]x*Hx for all x,

then

Proof. This is a consequence of Veselic and Slapnicar (1993), Theorem 2.11.
We merely need to verify that the assumptions of Theorem 2.11 hold,

x*Ex\ < \x\*\E\\x\ < e \x\*\A\\x\ < r]x*Hx.

a

2.7. Congruence transformations for positive-definite matrices

All the bounds we have presented so far for positive-definite matrices con-
tain the term A~XI2EA~XI2. Since A is Hermitian positive-definite, A1!2

is Hermitian, which makes A~1'2EA~~1/2 Hermitian. This in turn implies
that the two-norm and Probenius norm of A~l^2EA~1/2 are invariant under
congruence transformations. We say that two square matrices A and M are
congruent if A = D*MD for some nonsingular matrix D. If A is Hermitian
positive-definite, so is M because congruence transformations preserve the
inertia.

We start out by showing that the bound in Theorem 2.8 is invariant under
congruence transformations.

Corollary 2.13 Let A and be Hermitian positive-definite and A + E Her-
mitian. If A = D*MD and A + E = D*(M + F)D, where D is nonsingular,
then

m a x
\<i<n

Proof. (See Mathias (19976), Theorem 2.4.) Start with the bound in The-
orem 2.8,

^lAT^ ^ \\A-V*EA-V\
\\\

Positive-definiteness is essential here. Since A is Hermitian positive-definite,
it has a Hermitian square root A1/2. Hence A~1^2EA~1^2 is Hermitian. This
implies that the norm is an eigenvalue,

\\A-ll2EA-l'2\\ = max \\AA-l'2EA-l'2)\.
l<j<n
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Now comes the trick. Since eigenvalues are preserved under similarity trans-
formations, we can reorder the matrices in a circular fashion until all grading
matrices have cancelled each other out, that is,

= \j{A~lE) = \j(D~l M~lF D) = \j{M~lF)

At last we recover the norm

may l

•
Corollary 2.13 extends Theorem 2 of Barlow and Demmel (1990) and

Theorem 2.3 of Demmel and Veselic (1992) to a larger class of matrices. It
suggests that the eigenvalues of A + E have the same error bound as the
eigenvalues of M + F. We can interpret this to mean that the eigenvalues
of a Hermitian positive-definite matrix behave as well as the eigenvalues of
any matrix congruent to A. The example below illustrates this.

Example 2.2 (See Demmel and Veselic (1992), p. 1211.) The matrix

/1040 1029 1019'
A = 1029 1020 109

\1O19 109 1

is symmetric positive-definite with eigenvalues (to six decimal places)

1.00000 -1040, 9.90000 • 1019, 9.81818 • HT1.

If we write A = DMD, where

/ I .1 .1\ / 1 0 2 0

M = .1 1 .1 , D=\ 1010

V . i . 1 1 / V
then the eigenvalues of M are (to six decimal places)

9.00000 • 10"1, 9.00000 • 10~\ 1.20000.

Corollary 2.13 implies that the widely varying eigenvalues of A, and in
particular the very small ones, are as impervious to changes in M as the
uniformly sized eigenvalues of M.

As long as 30 years ago, structural engineers considered congruence trans-
formations like the one above where D is diagonal and all diagonal elements
of M are equal to one (Rosanoff, Glouderman and Levy 1968, pp. 1041,1050).
They observed that such an equilibration 'reduce[s] the ratio of extreme eig-
envalues' (Rosanoff et al. 1968, p. 1045), and that 'equilibration is of major
importance in measurement of matrix conditioning' (Rosanoff et al. 1968,
p. 1059). •
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Prom the circular reordering argument in the proof of Corollary 2.13 it
also follows that the other bounds for positive-definite matrices are invariant
under congruences. One bound is Theorem 2.9.

Corollary 2.14 Let A and A + E be Hermitian positive-definite. If A =
D*MD and A + E = D*(M + F)D, where D is nonsingular, then

max
l<i<n

Proof. See Li (1994a), Theorem 3.2, and Li and Mathias (1997), Proposi-
tion 3.4'. •

The other bound that is also invariant under congruences is the Probenius
norm bound Theorem 2.7.

Corollary 2.15 Let A and A + E be Hermitian positive-definite. If A =
D*MD and A + E = D*(M + F)D, where D is nonsingular, then

Proof. (See Li (1994a), Theorem 3.2, and Li and Mathias (1997), Propos-
ition 3.4'.) Since the Frobenius norm sums up squares of eigenvalues, the
bound from Theorem 2.7 can be written as

(J + A-WEA-1'2)-1'2^ = ££
where //j are the eigenvalues of the Hermitian matrix A~1I2EA~1/2. The
circular reordering argument from the proof of Corollary 2.13 implies that
fii are also the eigenvalues of M~XI2FM~XI2. •

One may wonder what's so interesting about congruence transformations.
One can use congruence transformations to pull the grading out of a matrix
(see Barlow and Demmel (1990), Section 2, Demmel and Veselic (1992),
Sections 1, 2.1, and Mathias (1995). Consider the matrix A in Example
2.2. It has elements of widely varying magnitude that decrease from top to
bottom. The diagonal matrix D removes the grading and produces a matrix
M, where M = D~lAD~l, all of whose elements have about the same order
of magnitude and all of whose eigenvalues are of about the same size.

More generally we say that a Hermitian positive-definite matrix A is
graded, or scaled, if A = DMD* and the eigenvalues of M vary much less
in magnitude than the eigenvalues of A (Mathias 1995, Section 1).
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2.8. Congruence transformations for indefinite matrices

Since the application of congruence transformations is not restricted to Her-
mitian positive-definite matrices, we may as well try to find out whether
indefinite matrices are invariant under congruences. It turns out that the
resulting error bounds are weaker than the ones for positive-definite matrices
because they require stronger assumptions.

If we are a little sneaky (by extracting the congruence from the polar
factor rather than the matrix proper) then the bound for normal matrices
in Theorem 2.4 becomes invariant under congruences.

Corollary 2.16 Let A be normal and nonsingular, with Hermitian posi-
tive-definite polar factor H. If D is nonsingular and

E = DEiD*, H = DMiD*,

then

Proof. See Eisenstat and Ipsen (1997), Corollary 3.4. •

This means the error bound for eigenvalues of a normal matrix is the
same as the error bound for eigenvalues of the best scaled version of its
positive-definite polar factor.

Let's return to Weyl-type bounds, but now under the condition that the
congruence transformation is real diagonal. Theorem 2.11 leads to a bound
that is essentially scaling invariant. It is similar to the one above, in the
sense that the scaling matrix is extracted from its positive-definite polar
factor. However, now the perturbations are restricted to be component-wise
relative.

Corollary 2.17 Let A = DMD be nonsingular Hermitian, where D is di-
agonal with positive diagonal elements, and let H = DM\D be the positive-
definite polar factor of A. If A + E is Hermitian and \E\ < e \A\ for some
e > 0, then

max fCel l lMlHHMf 1 ! ! .

Proof. This is a consequence of Veselic and Slapnicar (1993), Theorem 2.13.
We use variational inequalities to show that the assumptions of Corol-
lary 2.12 are fulfilled. Since D is positive-definite,

\x\*\A\ \x\ = \x\*D \M\ D\x\ < || \M\ || x*D2x for all x.

Variational inequalities imply

x*D2x< \\M^\\x*Hx.
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Therefore

e |X|*|J4| \X\ < rjx*Hx for all x,

where r\ = e || |M| || | |Mf 1||. Now apply Corollary 2.12. •

The amplifying factor || \M\ || | |Mf 1|| in the bound is almost like the con-
dition number of the absolute value matrix \M\, or the condition number of
the scaled polar factor Mi. Therefore the relative error in the eigenvalues
of a Hermitian matrix is small if the polar factor and the absolute value of
the matrix are well scaled.

The following bound is similar in the sense that it applies to a column
scaling of a Hermitian matrix A = MD. In contrast to Corollary 2.17,
however, the scaled matrix M is in general no longer Hermitian, and the
inverse M~l now appears in the bound rather than the inverse M^1 of the
scaled polar factor.

Corollary 2.18 Let A = MD be nonsingular Hermitian and D diagonal
with positive diagonal elements. If A + E is Hermitian, and \E\ < e \A\ for
some e > 0, then

Proof. (See Veselic and Slapnicar (1993), Theorem 3.16.) First we take
care of the scaling matrix D. The technology of previous proofs requires
that D appear on both sides of the matrix. That's why we consider A2 =
A*A = DM*MD. The component-wise perturbation implies

x*E2x\ ^ K l ^ p l z l .
Proceeding as in the proof of Corollary 2.17 gives

\x\*\A\2 \x\ < || \M\ ||2 HM"1!!2 x*A2x for all x.

Hence

\x*E2x\ < T]2 x*A2x,

where r\ = e || \M\ || HAff11|. Now that we have got rid of D, we need to undo
the squares. In order to take the positive square root without losing the
monotonicity, we need positive-definite matrices under the squares. Polar
factors do the job.

If H and HE are the Hermitian positive-definite polar factors of A and
E, respectively, then

x*E2x = x*Hlx, x*A2x = x*H2x.

Therefore

x*HEx < if x*H2x for all x.
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Now comes the trick. Because HE and H are Hermitian positive-definite we
can apply the fact that the square root is operator-monotone (Bhatia 1997,
Proposition V.I.8) and conclude

X*HEX < r\ x*Hx.

Since \x*Ex\ < X*HEX, Theorem 2.11 applies. •

The next bound, the last one in this section, applies to general perturb-
ations. Compared to other bounds it severely constrains the size of the
perturbation by forcing it to be smaller than any eigenvalue of any principal
submatrix.

Theorem 2.19 Let A = DMD and A + E = D(M + F)D be real, sym-
metric and D a real nonsingular diagonal matrix. Among all eigenvalues of
principal submatrices of M, let /x be the smallest in magnitude. If ||.F|| < \fi\
then

Proof. See Gu and Eisenstat (1993), Corollary 5. •

2.9. Ritz values

Ritz values are 'optimal' approximations to the eigenvalues of Hermitian
matrices.

Let A be a Hermitian matrix of order n and Q a matrix with m orthonor-
mal columns. Then W = Q*AQ is a matrix of order m whose eigenvalues

Ai > • • • > Am,

are called Ritz values of A (Parlett 1980, Section 11.3). The corresponding
residual is R = AQ — QW. Ritz values are optimal in the following sense.
Given Q, the norm of R can only increase if we replace W by another matrix,
that is (Parlett 1980, Theorem 11-4-5),

\\R\\ = \\AQ-QW\\<\\AQ-QC\\

for all matrices C of order m.
Moreover, one can always find m eigenvalues of A that are within absolute

distance ||i?|| of the Ritz values (Parlett 1980, Theorem 11-5-1),

for some permutation r.
Unfortunately the corresponding relative error bounds are not as simple.

They are expressed in terms of angles between the subspaces range(Q),
range(^4Q), and range(A~1Q). Let 0 < 6\ < TT/2 be the maximal principal
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angle between range(Q) and range(AQ), and 0 < 02 < 7r/2 be the maximal
principal angle between range(A<5) and T&nge(A~1Q).

Theorem 2.20 If A is nonsingular Hermitian, then there exists a per-
mutation r such that

max —^——
\<i<m |AT(i)|

Proof. (See Drmac (1996o), Theorem 3, Proposition 5.) In order to exhibit
the connection to previous results we sketch the idea for the proof. First
express the Ritz values as an additive perturbation. To this end define the
Hermitian perturbation

E = -(RQ* + QR*).

Then Q is an invariant subspace of A + E,

{A + E)Q = QW,

and the eigenvalues of W are eigenvalues of A + E.
Now proceed as in the proof of Corollary 2.18 and look at the squares,

x*E2x = x*A* A-*E*EA~l Ax < \\EA~1 \\2x*A2x for all x.

Undo the squares using polar factors and the operator-monotonicity of the
square root, and apply Theorem 2.11. Hence the eigenvalues fii > • • • > fin

of A + E satisfy

Let Ai > • • • > Xm be those //j that are also eigenvalues of W, and let r be
a permutation that numbers the eigenvalues of A corresponding to //j first.
Then

max

We still have to worry about H-EM"1!!- Write

-EA~l = (I- QQ*)AQQ*A~1 + QQ*(I - AQQ*A~l).

Here QQ* is the orthogonal projector onto range(<3), while AQQ*A~l is the
oblique projector onto range(^4Q) along range(Q*^4~1)- This expression for
EA~X appears in Drmac (1996a), Theorem 3. It can be bounded above by
sin 0i + tan #2- ^

Therefore the relative error in the Ritz values of W = Q*AQ is small
if both subspace angles 9\ and 62 are small. Things simplify when the
matrix A is also positive-definite because there is only one angle to deal with.
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Let A be Hermitian positive-definite with Cholesky factorization A = LL*.
Let 0 < 9 < TT/2 be the maximal principal angle between range(L*Q) and
range(L~1(5).

Theo rem 2.21 If A is Hermitian positive-definite and if sin# < 1 then
there exists a permutation r so that

max <
\<i<m \XT(i)\ 1 — sin 9'

Proof. See Drmac (1996 a), Theorem 6. •

Theorem 2.21 can be extended to semi-definite matrices (Drmac and Hari
1997).

3. Additive perturbations for singular values

Let B be a complex matrix. We want to estimate the absolute and the
relative errors in the singular values of the perturbed matrix B + F, For
definiteness we assume that B is tall and skinny, that is, B is m x n with
m > 77. (if this is not the case just consider B*).

Perturbation bounds for singular values are usually derived by first con-
verting the singular value problem to an Hermitian eigenvalue problem.

3.1. Converting singular values to eigenvalues

The singular value decomposition of a m x n matrix B, m > n, is

where the left singular vector matrix U and the right singular vector matrix
V are unitary matrices of order m and n, respectively. The nonnegative
diagonal matrix X of order n contains the singular values <7j of B,

where

G\ > • • • > an > 0.

There are two popular ways to convert a singular value problem to an ei-
genvalue problem.

• The eigenvalues of
m n

(
n \B* 0
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are

O~l, • • • ,CTn, — ( T j , . . . , — <7n, 0 , . . . , 0 .

TO—n

Therefore the singular values of B are the n largest eigenvalues of A
(Horn and Johnson 1985, Theorem 7.3.7).

• The eigenvalues of B*B are

Therefore the singular values of B are the positive square roots of the
eigenvalues of B*B (Horn and Johnson 1985, Lemma 7.3.1).

Since singular values are eigenvalues of a Hermitian matrix, they are well
conditioned in the absolute sense.

3.2. Hoffman-Wielandt-type bounds

We bound the sum of squares of all distances between the ith exact and
perturbed singular values in terms of the Frobenius norm.

The singular values of B and B + F are, respectively,

CTI > • • • > a n > 0, <ri > • • • > on > 0.

Converting the singular value problem to an eigenvalue problem d la Sec-
tion 3.1 and applying the Hoffman-Wielandt theorem for Hermitian matrices
(2.3) lead immediately to the absolute error bound

\

The relative bound below requires in addition that both matrices be non-
singular.

Theorem 3.1 Let B and B + F be nonsingular. If HFS"1!! < 1, then

\

r- - n 2

2

Therefore the error in the singular values is small if / + FB 1 is close to
being unitary (or orthogonal). This is the case when B + F = (I + FB'1) B
is more or less a unitary transformation away from B.

Proof. See Li (1994a), Theorem 4.3. •
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3.3. Weyl-type bounds

We bound the worst-case distance between the zth exact and perturbed
singular values in terms of the two-norm.

The absolute error bound is an immediate consequence of Weyl's Perturb-
ation Theorem (2.4)

The corresponding relative bound below restricts the range of F but not its
size. Here B^ is the Moore-Penrose inverse of B.

Theorem 3.2 If range(S + F) C range(£), then

Wi - o - j | <Gi \\B]F\\, \<i<n.

If range((5 + F)*) C range(5*), then

Wi — Oi < Oi \\FB*\\, 1 < i < n.

Proof. (See Di Lena, Peluso and Piazza (1993), Theorem 1.1.) We prove
the first bound; the proof for the second one is similar.

Life would be easy if we could pull B out of F, say if F = BC for some
matrix C. Then we could write B + F = B(I + C) and apply inequality
(3.3.26) of Horn and Johnson (1991),

to get the relative bound

It turns out that the range condition is exactly what is needed to pull B
out of F. This is because range(5 + F) C range(-B) implies F = BC\ for
some C\. This allows us to write

F = BCi = BB^B d = BB^F.

Consequently, setting C = B^F gives the desired result. •

When B has full column rank the second range condition in Theorem 3.2
is automatically satisfied.

Corollary 3.3 If B has full column rank then

Proof. (See Di Lena et al. (1993), Remark 1.1.) If B has full column rank
n then its rows span n-space. Hence range((.B + F)*) C range(B*) for any
F, and the second relative bound in Theorem 3.2 holds. •
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Therefore singular values of full-rank matrices are well conditioned in the
absolute as well as relative sense. This may sound implausible at first, in
particular when B has full rank while B+F is rank-deficient. In this case all
singular values of B are nonzero while at least one singular value of B + F
is zero. Hence a zero singular value of B + F must have relative error equal
to one. How can the singular values of B be well conditioned? The answer
is that in this case the relative perturbation ||-B^-F|| is large. The following
example illustrates that ||-B^F|| is large when B and B + F differ in rank.

Example 3.1 Let

B= I 0 77 I , F =

where r\ ^ 0. The rank of B is two, while the rank of B + F is one.
The relative error in the singular value a = 0 of B + F is equal to one

because \r] — 0\/\r]\ = 1. Since

\ V /

we get \\B^F\\ = 1. Corollary 3.3 gives

i~cr\

0 0
o - i

max
i

< 1.

Therefore Corollary 3.3 is tight for the zero singular values of B + F. •

Corollary 3.3 extends Demmel and Veselic (1992, Lemma 2.12) to matrices
that do not necessarily have full rank (Di Lena et al. 1993, Remark 1.2).
When B is nonsingular Corollary 3.3 implies that both range conditions in
Theorem 3.2 hold automatically.

Corollary 3.4 If B is nonsingular, then

max <
\<i<n 0~i

The following bound, for a different error measure, is similar to the
Probenius norm bound Theorem 3.1. It requires that both B and B + F be
nonsingular.

Theorem 3.5 Let B and B + F be nonsingular. Then

,ma* g ' / - ? < o IK7
l<i<n \/Oi<Ji ~

Proof. See Li (1994a), Theorem 4.3. •
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As in Theorem 3.1, the error in the singular values is small if / + FB~l

is close to being unitary (or orthogonal). This is the case when B + F =
(I + FB~l) B is more or less a unitary transformation away from B.

3.4- Congruence transformations

We start with one-sided grading of matrices B with full-column rank. That
is, B = CD or B = DC, where D is nonsingular. In the event D is diagonal,
CD represents a column scaling while DC represents a row scaling.

All relative singular value bounds presented so far are invariant under one-
sided grading from the appropriate side. That's because the bounds contain
terms of the form B^F or FB^. Consider B^F, for instance. Grading from
the right is sandwiched in the middle, between B^ and F, and therefore
cancels out.

Let's first look at the Hoffman-Wielandt-type bound for graded matrices,
which follows directly from Theorem 3.1.

Corollary 3.6 Let B = CD and B + F = (C + G)D be nonsingular. If
\\GC~l\\ < 1, then

\

n
^ - A I (7; — (7,; 1
/ j rr-rt- 1

Proof. (See Li (1994a), Theorem 4.3.) The grading is sandwiched in the
middle of the relative perturbation FB~l, and cancels out,

FB~l = (GD) (CD)~l = G DD~l C"1 = GC~l.

•
Moving right along to the two-norm, we see that Corollary 3.3 is invariant

under grading from the right.

Corollary 3.7 If B = CD has full column rank, and if B+F = (C+G)D,
then

Proof. (See Di Lena et al. (1993), Remark 1.2.) Pull column rank is needed
to extract the grading matrix from the inverse,

fit = (CL>)t = £>tct = D~lC].

n

Therefore the relative error in the singular values of B + F is small if there
is a grading matrix D that causes the relative perturbation of the graded
matrices ||GC^|| to be small. For instance, suppose B = CD has columns
whose norms vary widely while the columns of C are almost orthonormal.
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If the perturbed matrix is scaled in the same way then the error bound
in Corollary 3.7 ignores the scaling and acts as if it saw the well-behaved
matrices C and C + G. Corollary 3.7 extends Theorem 2.14 of Demmel and
Veselic (1992) to a larger class of matrices.

The other two-norm bound, Theorem 3.5, is also invariant under grading.

Corollary 3.8 Let B = CD and B + F = (C + G)D be nonsingular. If
\\GC-l\\ < 1, then

Proof. See Li (1994a), Theorem 4.3. •

Finally we present the only bound that is invariant under grading from
both sides. It requires that the grading matrices be real diagonal, and it
restricts the size of the perturbation more severely than the other bounds.

Theorem 3.9 Let B = DxCDr and B + F = Dt(C + G)Dr be real sym-
metric, where Di and Dr are real nonsingular diagonal matrices. Among
the singular values of all square submatrices of B, let 9 be the smallest one.
If ||G|| < 9, then

2 f l | | G | | Oioj 2 0
-\\G\\ —$— < —^- < \\G\\ ^

Proof. See Gu and Eisenstat (1993), Corollary 10. •

4. Some applications of additive perturbations

We discuss Jacobi's method for computing singular values and eigenvalues,
and deflation of triangular and bidiagonal matrices.

4-1- Jacobi's method for singular values

Jacobi's method is generally viewed as a method that computes eigenval-
ues and singular values to optimal accuracy. It was Jacobi's method that
first attracted attention to invariance of eigenvalue and singular values error
bounds under congruence (Demmel and Veselic 1992, Mathias 1995, Rosan-
off et al. 1968). We give a very intuitive plausibility argument, shoving many
subtleties under the rug, to explain the high accuracy and invariance under
grading of Jacobi's method. Our discussion runs along the lines of Demmel
(1997), Section 5.4.3, and Mathias (1995), Sections 2, 3. Other detailed
accounts can be found in Demmel and Veselic (1992) and Drmac (19966).
An attempt at a geometric interpretion of Jacobi's high accuracy is made in
Rosanoff et al. (1968), pp. 1045-6.
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A one-sided Jacobi method computes the singular values of a tall and
skinny matrix by applying a sequence of orthogonal transformations on the
right side of the matrix. The duty of each orthogonal transformation is to
orthogonalize two columns of the matrix. The method stops once all columns
are sufficiently orthogonal to each other. At this point the singular values
are approximated by the column norms, that is, the Euclidean lengths of
the columns.

For simplicity, assume that B is a real nonsingular matrix of order n. Let
D b e a row scaling of B, that is, B = DC, where D is diagonal. We show
that the one-sided Jacobi method ignores the row scaling. When Jacobi
applies an orthogonal transformation Q to B, the outcome in floating point
arithmetic is BQ + F. Corollary 3.4 implies that the singular values <r, of
BQ + F satisfy

<i<n CT

where F = DG.
Let's bound the squared error ||G||. Round-off error analysis tells us that

the error in the ith row is

where /% depends on the matrix size n and e > 0 reflects the machine
accuracy. Now the crucial observation is that the orthogonal transformations
happen on one side of the matrix and the scaling on the other side. Because
Q operates on columns it does not mix up different rows and therefore
preserves the row scaling. This means we can pull the ?th diagonal element
of D out of efF,

\\e[F\\ < e(3t \\ejB\\ = efc \\ef(DC)\\ = \du\ eft \\efC\\.

This gives a bound for the ith row of G,

\\ejG\\ = \du\-1 \\ejF\\ < efr \\eJC\\ + O(e2).

The total error is therefore bounded by

where (3 depends on n. Therefore the error bound for the singular values of
BQ + F is independent of the row scaling

max
l<i<n (Ji

This means Jacobi's method produces singular values of B but acts as if
it saw C instead. That's good, particularly if D manages to pull out all the
grading. Then all singular values of C have about the same magnitude and



RELATIVE PERTURBATION RESULTS 179

K(C) is close to one. Therefore the above bound K(C) (3e tends to be on the
order of machine accuracy e, implying that the relative error in the singular
values is on the order of machine accuracy.

The argument is more complicated when the orthogonal transformations
are applied on the same side as the scaling matrix. Fortunately the resulting
error bounds do not tend to be much weaker (Mathias 1995, Section 4).

4-2. Jacobi's method for eigenvalues

A two-sided Jacobi method computes eigenvalues of a real symmetric posi-
tive-definite matrix by applying a sequence of orthogonal similarity trans-
formations to the matrix. An orthogonal similarity transformation operates
on two rows, i and j, and two columns, i and j , to zero out elements (i, j) and
(j, i). The method stops once all off-diagonal elements are sufficiently small.
At this point the eigenvalues are approximated by the diagonal elements.

Let A be real symmetric positive-definite of order n, and A = DMD,
where D is a nonsingular diagonal matrix. The Jacobi method computes
the eigenvalues of a matrix A + E. According to Corollary 2.13, the error
bound for the eigenvalues Aj of A + E is

\<i<n

where E = DFD. One can show that the error is bounded by

where a depends on n and e > 0 reflects the machine accuracy. Therefore

max ^~ , A i * < ae K{M) + O(e2).
l<i<n \\i\ -

This means that the relative error in the eigenvalues is small, provided the
amplifier K(M) is small.

The amplifier K(M) can be minimized via an appropriate choice of the
scaling matrix D. If

/an
/ •

D =

then all diagonal elements of M are equal to one. Therefore (van der Sluis
1969, Theorem 4.1)

K(M) <

where the minimum ranges over all nonsingular diagonal matrices 5. This
means that a diagonal scaling that makes all diagonal elements the same
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gives the minimal condition number among all diagonal scalings (up to a
factor of matrix size n).

We claimed above that the error ||F|| in (4.1) is small. Let's examine in
more detail why. The error F comes about because of floating point arith-
metic and because of the fact that eigenvalues are approximated by diagonal
elements when the off-diagonal elements are small but not necessarily zero.
Let's ignore the round-off error, and ask why ignoring small off-diagonal
elements results in a small ||.F||. The trick here is to be clever about what
it means to be 'small enough'.

Suppose the Jacobi method has produced a matrix A whose off-diagonal
elements are small compared to the corresponding diagonal elements,

This implies \rriij\ < e where rriij are the elements of the graded matrix M =
D~1AD~1 and D is the above grading matrix with y/aii on the diagonal.
Since the diagonal elements of M are equal to one, we can write M = I+ F,
where F contains all the off-diagonal elements of M and

Therefore ||F|| is small, and (4.1) implies that the error in the eigenvalues
is bounded by

- A,
max -1!! (ri — l)e.

Furthermore, one can bound || Aif—11| in terms of e,

1

\-\\F\\ ~ l - ( n - l ) e '

Replacing this in the error bound gives

( n - l ) e
max

Therefore, ignoring small off-diagonal elements produces a small relative er-
ror. A detailed discussion of relative bounds for eigenvalues of scaled, almost
diagonal matrices can be found in Hari and Drmac (1997) and Section 1 of
Matejas and Hari (1998).

The preceding arguments illustrate that Jacobi's method views a matrix
in the best possible light, that is, in its optimally scaled version. Therefore
eigenvalues produced by Jacobi's method tend to have relative accuracy close
to machine precision. This is as accurate as it gets. In this sense Jacobi's
method is considered optimally accurate.
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One way to implement a two-sided Jacobi method is to apply a one-
sided method to a Cholesky factor (Barlow and Demmel 1990, Mathias
1996, Veselic and Hari 1989). Let A be a Hermitian positive-definite matrix
with Cholesky decomposition A = L*L. The squares of the singular values
of L are the eigenvalues of A. The singular values of L can be computed by
the one-sided Jacobi method from Section 4.1. The preliminary Cholesky
factorization does not harm the accuracy of the eigenvalues. Here is why.
The computed Cholesky factor is the exact Cholesky factor of a matrix
A + E, where (Mathias 1995, Lemma 2.6)

and 7 depends on n. These perturbations have the same form as the ones
above, hence lead to a small relative error. A similar argument shows that
the squares of the diagonal elements of L are often good approximations to
the eigenvalues of A (Mathias 1996).

4-3. Deflation of block triangular matrices

When a matrix is tall and skinny, or short and fat, one can save operations
by first converting it to a skinny, short matrix before computing singular
values. This can be accomplished by applying a QR decomposition and
then computing the singular values of the resulting triangular matrix (Chan
1982). If done properly, the relative accuracy of the singular values is pre-
served (Mathias 1995, Theorem 3.2).

Suppose we compute the singular values of a triangular matrix by reducing
the matrix to diagonal form, say by a Jacobi or QR method. Partition the
triangular matrix as

Bu

If the off-diagonal block B\2 were zero then the problem of finding the singu-
lar values of B could be split into the two smaller, independent subproblems
of finding the singular values of B\\ and of B22. However, if the off-diagonal
block B\2 is not zero, we want to know when it can be thrown away without
causing too much harm to the singular values of B. The process of dis-
carding information in a matrix to reduce the problem complexity is called
'deflation'.

The deflated matrix and the perturbation are, respectively,

( \ F=( )

Corollary 3.4 implies the following relative bound for the singular values
of the deflated matrix B + F.
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Corollary 4.1 If B is nonsingular, then

max ^ - ^

Proof. See Di Lena et al. (1993), Theorem 2.1. •

This means the singular values of the deflated matrix have small relative
error when the off-diagonal block is small compared to one of the diagonal
blocks.

Now let's suppose a preliminary ordering of the singular values has already
taken place. Say, the large singular values have floated to the top of the
matrix B while the smaller ones have sunk to the bottom. The bound
below is useful when the singular values of the top diagonal block are well
separated from the singular values of the bottom block.

Theorem 4.2 If

^min(5n) > « > / ? > amax(B22),

then

max \Gi - Oi\ < <ji ~2 ~2.

or — p*

Proof. See Di Lena et al. (1993), Theorem 2.2. •

This means the singular values of the deflated matrix have small relative
error if the off-diagonal block is small compared to the separation between
the singular values of the two diagonal blocks. Theorem 4.2 is an extension
of Demmel and Kahan (1990), Theorem 5. Other bounds that profit from a
strong singular value separation appear in Chandrasekaran and Ipsen (1995),
Theorem 5.2.1, Eisenstat and Ipsen (1995), Section 5, and Mathias and
Stewart (1993), Theorem 3.1. Bounds for almost diagonal matrices that can
take advantage of scaling are derived in Matejas and Hari (1998).

4-4- Deflation of bidiagonal matrices

Triangular matrices are often further reduced to bidiagonal form before sin-
gular values are computed. A bidiagonal matrix is of the form

Pi \

B =

Bidiagonal matrices can also arise when one computes the vibrational fre-
quencies of a linear mass-spring system (Demmel et al. 1997, Section 12.1).
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There are several algorithms for computing singular values of a bidiagonal
matrix to high relative accuracy (Demmel and Kahan 1990, Fernando and
Parlett 1994). Because such algorithms apply a sequence of transformations
to reduce B to diagonal form, they need to decide when an off-diagonal
element 3j is small enough to be neglected without severely harming the
singular values.

Suppose we are contemplating the removal of a single off-diagonal element.
Here B + F is equal to B, except for the off-diagonal element in row j and
column j + 1, which is equal to zero. Then F = —(3jGjeJ+1 and | |F| | = \3j
Corollary 3.4 implies the following bound.

Corollary 4.3 If B is nonsingular bidiagonal, then

max ^ - ^ < Ift

Proof. See Di Lena et al. (1993), Section 3. •
This means that if we remove a small element from row j and column

j + 1 of a bidiagonal matrix, then the relative error in the singular values
of the deflated matrix is small if column j or row j + 1 of B~l are small in
norm. Similar bounds, but for a different error measure, appear in Deift,
Demmel, Li and Tomei (1991), Theorem 4.7, and Demmel and Kahan (1990),
Theorem 4.

Corollary 4.3 justifies the use of Convergence Criterion 1 (see Demmel
and Kahan (1990), Section 2, and Deift et al. (1991), Section 4) in the zero-
shift Golub-Kahan algorithm for computing singular values of bidiagonal
matrices. The practical usefulness of this bound also derives from the fact
that it can be computed via the simple recursion below.

Corollary 4.4 If B is nonsingular bidiagonal, then

\<i<n a

where
82 3?

and

Proof. See Di Lena et al. (1993), Theorems 3.1, 3.2. •

When the shift in the Golub-Kahan algorithm or the qd algorithm is non-
zero, it can be incorporated into the perturbation bounds (see Eisenstat and
Ipsen (1995), Theorem 5.7, and Fernando and Parlett (1994)).
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5. Multiplicative perturbations for eigenvalues

We shift gears and represent the perturbed matrix from now on as D1AD2
where D\ and D2 are nonsingular. When D2 = D^1 this is just a similarity
transformation, which means that A and D\AD2 have the same eigenvalues.
When D2 — D\ this is a congruence transformation, which means that A and
D1AD2 have the same inertia when A is Hermitian. Since the nonsingularity
of D\ and D2 forces A and D1AD2 to have the same rank, multiplicative
perturbations are less powerful than additive perturbations.

Then why are multiplicative perturbations useful? It turns out that it
is sometimes easier to express a component-wise relative perturbation of a
sparse matrix as a multiplicative perturbation than as an additive perturba-
tion. The following example illustrates how natural multiplicative perturb-
ations can be, especially for bidiagonal and tridiagonal matrices.

Example 5.1 (See Barlow and Demmel (1990), p. 770, Eisenstat and Ip-
sen (1995), Corollary 4.1.) Consider the real, symmetric tridiagonal matrix

A =

0 a2

a.2 0 a3

a3 0 oc\
OL\ 0 CC5

&5 0

Such a matrix occurs, for instance, when one converts the singular value
problem of a bidiagonal matrix to an eigenvalue problem (see Section 3.1).
A component-wise relative perturbation of a single off-diagonal pair in A
produces the perturbed matrix

A =

\
0

a2

a2
0

(3a3

(3a3

0
a4

a4

0
0

where j3 ̂  0. For instance, (3 could be of the form (3 = 1 + e, where |e| does
not exceed machine epsilon. The perturbed matrix A can be represented as
a multiplicative perturbation A = DTAD, where

D =

VVP
VP/
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In this case a component-wise relative perturbation of an off-diagonal pair
can be represented as a multiplicative perturbation. •

The simple-minded approach of disguising a multiplicative perturbation
as an additive perturbation, that is,

DiAD2 = A + E, where E = DXAD2 - A,

produces a perturbation matrix E that may not be small or meaningful.
There are different techniques for deriving multiplicative perturbation

bounds, and some of them are compared by Li and Mathias (1997, Sec-
tion 4.2). Here we start from absolute perturbation bounds and show that
they imply many of relative bounds.

5.1. Bauer-Fike-type bounds

Again we start with a diagonalizable matrix, and we bound the distance of a
perturbed eigenvalue to a closest exact eigenvalue in terms of the two-norm.

Let A = Xh.X~l be an eigendecomposition of A, where

and A; are the eigenvalues of A. Let A be an eigenvalue of the perturbed
matrix D\AD2 and i / O a corresponding unit eigenvector,

with residual
r = Ax — \x.

This time we use the Bauer-Fike theorem with residual bound (Bauer and
Fike 1960, Theorem Ilia),

min \ \ - A| < n(X) \\r\\. (5.1)
<i<7i

The relative error bound below for the eigenvalue A of the perturbed
matrix D\AD2 measures the error relative to the perturbed eigenvalue rather
than an exact eigenvalue.

Theorem 5.1 If A is diagonalizable, then

m i n \Xi-X\<\X\
\<i<n

Proof. (See Eisenstat and Ipsen (1996), Theorem 6.1.) The idea is to con-
coct a residual that contains the factor A and then to use the absolute bound
(5.1).
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From (DiAD2)xt = Xx follows

Az = XD^D^z, where z = D2x/\\D2x\\.

The residual for A and z is

/ = Az - Xz = A (D^D^1 - /) z,

and it contains A as a factor. Now apply the absolute bound (5.1) to / . •

The perturbed matrix D\AD2 is not required to be diagonalizable. As in
the case of additive perturbations, K(X) can be interpreted as a condition
number. The factor ||7 — D^D^W represents a relative deviation from
similarity, because

1 = (D2 -

represents a difference relative to D2.
There are two cases in which the bound in Theorem 5.1 is guaranteed to

be zero and hence tight. First, when D\ = D^1, because similar matrices
have the same eigenvalues. Second, when A = 0, because A and D\AD2 are
singular and both have a zero eigenvalue.

5.2. Hoffman-Wielandt-type bounds for diagonalizable matrices

Based on a one-to-one correspondence between exact and perturbed eigen-
values, we bound the sum (of squares) of all distances between exact and
perturbed eigenvalues in terms of the Frobenius norm. In contrast to the
previous section, the perturbed matrix must now also be diagonalizable.

Let A and D\AD2 be diagonalizable with respective eigendecompositions

A = XAX~\ k 1

The eigenvalues are

A =

An,

Theorem 5.2 If A and DiAD2 are nonsingular and diagonalizable, then
there exists a permutation r such that

\ 1=1
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There also exists a permutation a such that

\
\m\\DT1 - D 2 \ \ F .

Proof. The first bound is Theorem 2.1 of Li (1997), while the second one
is Theorem 2.1' of Li (1997). •

Therefore the relative error bound can only be small if D\ and D<i are close
to being a similarity transformation. A similar bound in Proposition 3.5 of
Li and Mathias (1997) applies to a one-sided perturbation and matrices with
positive eigenvalues and holds in any unitarily invariant norm.

5.3. Hoffman-Wielandt-type bounds for Hermitian matrices

Hoffman-Wielandt-type bounds for Hermitian matrices require that the per-
turbed matrix also be Hermitian. This means that the perturbed matrix had
better be of the form DAD*, where D is nonsingular. Since the perturbed
matrix is congruent to A, it has the same inertia as A. Number the eigen-
values of A and DAD* so that

Theorem 5.3 If A and DAD* are Hermitian and nonsingular, then

\

\ . | 2

Proof. See Li and Mathias (1997), Corollary 3.2'. A proof for the special
case of positive-definite matrices appears in Li (1994a), Theorem 3.1. •

Therefore, the relative error in the eigenvalues of DAD* is small if D is
close to a unitary (or orthogonal) matrix. The bound (Li 1997, Theorem 2.2)
is weaker than Theorem 5.3 (Li and Mathias 1997, Section 4.1). Majoriza-
tion theory can deliver bounds that are stronger than Theorem 5.3 and hold
for any unitarily invariant norm (Li and Mathias 1997, Proposition 3.2,
(3.8)).

5.4- Ostrowski-type bounds

In 1959 Ostrowski presented the first relative perturbation bounds for ei-
genvalues. He created a multiplicative perturbation DAD* of a Hermitian
matrix A, where D is nonsingular; and he bounded the ratio of exact and
perturbed eigenvalues in terms of the smallest and largest eigenvalues of
DD* (Ostrowski (1959), Horn and Johnson (1985), Theorem 4.5.9),

\i<Xi< Xi \max(DD*). (5.2)
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Ostrowski's theorem can also be phrased in terms of absolute values of
eigenvalues.

Theorem 5.4 If A and DAD* are Hermitian, then

Proof. See Eisenstat and Ipsen (1995), Theorem 2.1. •

This bound is tight, for instance, when D is a multiple of an orthogonal
matrix. The following example illustrates what the bound looks like in the
case of tridiagonal matrices.

Example 5.2 (See Eisenstat and Ipsen (1995), Corollary 4.1.) Return to
the symmetric tridiagonal matrix with zero diagonal and its single-element
perturbation in Example 5.1. In this case the bound in Theorem 5.4 amounts
to

- l A i l ^ l A i l ^ T H

(Kahan (1966), pp. 49ff., Demmel and Kahan (1990), Theorem 2), where
77 = max{|/3|, 1/|/3|}. Therefore the ratio between perturbed and exact ei-
genvalues is close to one if the perturbation |/3| is close to one.

This bound can be extended to the perturbation of any number of off-
diagonal pairs of a real symmetric tridiagonal matrix with zero diagonal
(Demmel and Kahan 1990, Corollary 1). •

Ostrowski's theorem (5.2) can also be extended to products of eigenvalue
ratios (Li and Mathias 1997, Theorem 2.3).

5.5. Weyl-type bounds

Ostrowski's theorem leads to a relative Weyl-type bound for multiplicative
perturbations.

Theorem 5.5 If A and DAD* are Hermitian, then

Proof. (See Eisenstat and Ipsen (1995), Theorem 2.1.) The proof is similar
to that of Theorem 2.8 for additive perturbations. Fix an index i. Since 0 is
the ith eigenvalue of A — A,/, Sylvester's Law of Inertia (Horn and Johnson
1985, Theorem 4.5.8) implies that 0 is the ith eigenvalue of D(A - XiI)D*.
Write

D(A - XiI)D* = DAD* - XiDD* = A + E,

where
A = DAD* - XJ, E = Xi{I-DD*).
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Applying Weyl's absolute bound (2.4) to A and A + E gives

ma* \Xj(A) - XM + E)\< \\E\\ = |A,| \\DD* - I\\.

In particular, for j = i,

\0-(.\i-\i)\<\\i\\\DD'-I\\.

a
The bound above holds even for zero eigenvalues. The factor \\DD* — I\\

represents the deviation of the congruence transformation from similarity.
This means that if the perturbed matrix is a congruence transformation of
the original matrix, then the relative error in the perturbed eigenvalues is
small if the congruence transformation is close to similarity.

Example 5.3 We can apply Theorem 5.5 to the symmetric tridiagonal
matrix with zero diagonal in Example 5.1. If we assume that the multiplic-
ative perturbation a is of the form a = 1 + e, then

Therefore a small relative error in a pair of off-diagonal elements causes only
a small relative error in the eigenvalues.

The bound below is similar in spirit to Theorem 5.5 but applies to a
different error measure.

Theorem 5.6 If A and DAD* are nonsingular Hermitian, then

Ki<n

- -

Proof. See Li and Mathias (1997), Proposition 3.2'. •
This bound was first derived for the special case of positive-definite matri-

ces (Li 1994a, Theorem 3.1).

6. Multiplicative perturbations for singular values

The perturbed matrix is represented as D1BD2, where D\ and Di are non-
singular diagonal matrices. Such a perturbation can occur, for instance,
when a one-sided Jacobi method is applied to B. In this case the computed
singular values are exact singular values of a matrix D1BD2 where D\ and
D2 are close to the identity (Demmel 1997, Section 5.4.3).

Again let B b e a tall and skinny matrix, that is, B is m x n with m> n.
The singular values of B are

<r\ > • • • > o-n > 0 .
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The perturbed matrix is represented as D1BD2, where D\ and D2 are non-
singular. The singular values of D1BD2 are

&\ > • • • > an > 0.

When D\ is diagonal it represents a row scaling, while a diagonal D2 rep-
resents a column scaling.

6.1. Ostrowski-type bounds

Let's first determine by which factor the singular values of B change when
multiplicative perturbations D\ and D2 are applied.

Theorem 6.1 We have

Proof. (See Eisenstat and Ipsen (1995), Theorem 3.1.) Convert the prob-
lem to an eigenvalue problem as in Section 3.1 and apply the eigenvalue
result Theorem 5.4. •

This means that if D\ and D2 are almost unitary then the norms in
Theorem 6.1 are almost one, and a perturbed singular value differs from the
corresponding exact singular value by a factor close to one.

Theorem 6.1 can reproduce perturbation bounds for component-wise per-
turbations of bidiagonal matrices from Barlow and Demmel (1990), The-
orem 1, Deift et al. (1991), Theorem 2.12, and Demmel and Kahan (1990),
Corollary 2. The example below illustrates how.

Example 6.1 (See Eisenstat and Ipsen (1995), Corollary 4.2.) Consider
the bidiagonal matrix

B =

and its component-wise perturbation

\
73«2 7402

75 "3 7603

where jj 7̂  0. For instance, if jj = 1 + ej for small ej then B is a component-
wise relative perturbation of B.
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Write B = D1BD2, where D\ takes care of the odd-numbered, diagonal
perturbations, while D2 takes care of the even-numbered, off-diagonal per-
turbations, like so:

'71
D = I 7173/72

717375/74
71737577/76,

/I
72/71

7274/73
V 727476/75 ,

The perturbation D\ operates on rows and D2 operates on columns. The
resulting interference is apparent in the increasing products and the denom-
inators, where each Di undoes part of the other's action in its own territory.

Application of Theorem 6.1 yields

-ai<ai<r,ai
77

where 77 = nj=i max{|7jl> l/|7j|}- This means that if each factor jj is close
to one then the ratio of perturbed to exact singular values is close to one.
•

These bounds are actually realistic. There are algorithms that deliver
singular values of bidiagonal matrices to high relative accuracy: the dqds
algorithm (Fernando and Parlett 1994) and, to a large extent, a fine-tuned
zero-shift version of the Golub-Kahan algorithm (Demmel and Kahan 1990,
Deift et al. 1991).

6.2. Hoffman-Wielandt-type bounds

Now let's bound the sum of squares of all relative errors.

Theorem 6.2 If B and D1BD2 have full column rank, then

N
Proof. See Li and Mathias (1997), Proposition 3.3'. •

The terms \\D\ — D^1\\F and ||£>2 ~~ -^2"1|l^ indicate how far D\ and D2,
respectively, are from being unitary (or orthogonal). The relative error is
small if D\ and D2 are close to unitary. A weaker version of Theorem 6.2
appears in Theorem 4.1 of Li (1994a). As with Theorem 5.3, majorization
theory yields a bound stronger than Theorem 6.2 that holds in any unitarily
invariant norm (Li and Mathias 1997, Proposition 3.3, (3.12)).
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The bound given below is similar in spirit but applies to a different error
measure.

Theorem 6.3 If B and D1BD2 have full column rank, then

N
where 1 < p < oo is an integer.

Proof. (See Li (1994a), Theorem 4.2.) This follows from Theorem 6.2 be-
cause

*• \ 1 I T\

1

,<^F £

•
6.3. Weyl-type bounds

At last we bound individual relative errors.

T h e o r e m 6.4 \<n - ai\ < Oi max { | | / - D f ^ f *||, \\I -

Proof. (See Eisenstat and Ipsen (1995), Theorem 3.3.) Convert the singular
value problem to a large eigenvalue problem as in Section 3.1 and apply
Theorem 5.5 to the eigenvalue problem. •

The factors | | /—D^D^*| | and | | /—D^D^W represent relative deviations
of D\ and D%, respectively, from being unitary (or orthogonal). Hence the
relative error in the singular values of D1BD2 is small if D\ and D2 are close
to unitary.

The following inequality is like the Frobenius norm bound in Theorem 6.2.

Theorem 6.5 If B and D1BD2 have full column rank, then

ma* ^ # < \ (\\D\ - D^\\ + \\D*2 - D
y/OiO~i Z V

Proof. See Li and Mathias (1997), Proposition 3.3'. •

A weaker bound appears in Theorem 4.1 of Li (1994a).
The following bound is a counterpart of the Frobenius norm bound in

Theorem 6.3.

Theorem 6.6 If B and D1BD2 have full column rank, then

max }ai~ai} , < —^rr {\\D\-Dll\\ + \\D*2 - D
< i < ?/\\P + \ \ P ~ 2 1 + 1 / P V " 1 1 II II 2 2
max } } , < r̂r
l<i<n ?/\Oi\P + \0i\P ~ 21 + 1/P

where 1 < p < 00 is an integer.
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Proof. (See Li (1994a), Theorem 4.2.) This follows from Theorem 6.5 in
the same way that Theorem 6.3 follows from Theorem 6.2. •

7. Some applications of multiplicative perturbations

We discuss component-wise perturbations of generalized bidiagonal matri-
ces, deflation of triangular matrices, and rank-revealing decompositions.

1.1. Component-wise perturbations of generalized bidiagonal matrices

Example 6.1 illustrates that small relative changes in any bidiagonal matrix
cause only small relative changes in its singular values, regardless of the
value of the nonzero matrix elements. Are there other matrices with this
pleasant property? The answer is not really. The only other matrices with
this property are those whose sparsity structure is 'essentially' bidiagonal
(Demmel and Gragg 1993). At first glance this result looks pretty negative.
It appears to suggest that we can forget about high relative accuracy for
matrices other than bidiagonals. But then again, not all perturbations are
component-wise relative perturbations. Just think about the perturbations
caused by the deflation of triangular matrices in Sections 4.3 and 4.4. There
is still plenty of room for singular values of all kinds of matrices to have
relative accuracy, but mostly not with regard to component-wise relative
perturbations.1

So, what are 'essentially' bidiagonal matrices? We define an undirected
bipartite graph G of a matrix B as follows. Each row of B is represented by
a node r,, and each column by a node c\. There is an edge between rj and Cj
if and only if element (i,j) of B is nonzero. The matrix B is called biacyclic
if its graph G is acyclic (Demmel and Gragg 1993, Section 1). Examples of
biacyclic matrices, in addition to bidiagonal matrices, include the following
'half arrow' matrices (Demmel and Gragg 1993, Section 5):

/ *

\

*
*
*
* /

/ *

\

\

*
*
*
* /

The nice thing about subjecting biacyclic matrices to component-wise
relative perturbations is that we get an Ostrowski-type bound. This means
that changing an element of a biacyclic matrix by a factor does not change

1 However, if we are willing to restrict the values of the matrix elements and impose signs
on the nonzero entries of a matrix so as to forestall cancellation in the computation
of certain quantities, then one can also obtain high relative accuracy (Demmel et al.
1997).
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the singular values by more than this factor, regardless of the value of the
nonzero matrix elements. No other matrices possess this property.

Theorem 7.1 Let B be a matrix of order n. The following two conditions
are equivalent:

• B is biacyclic
• if B is equal to B except for element (k,l), which is multiplied by 7 7̂  0,

then the singular values ô  of B satisfy

1 ! ! Ui<Gi< at max | | 7 | , ^ " ^ j , 1 < i < n.

Proof. (See Demmel and Gragg (1993), Theorem 1.) The result also follows
directly from Theorem 6.1 (Eisenstat and Ipsen 1995, Corollary 4.3). •

Theorem 7.1 implies that a small relative perturbation in a matrix element
causes small relative changes in the singular values, regardless of the values
of the nonzero matrix elements, if and only if the matrix has an acyclic
graph. To see this, consider 7 = 1 + e for some e > 0. Theorem 7.1 implies
the relative error bound

Wi — 0i | < °~iei 1 < i < n.

Theorem 7.1 can be extended to the case where all elements of a biacyclic
matrix are multiplied by nonzero factors. This gives a bound similar to the
one in Example 6.1 (see Demmel and Gragg (1993), p. 206, and Eisenstat
and Ipsen (1995), Corollary 4.3).

7.2. Deflation of block triangular matrices, again

First we prove an auxiliary bound for a special multiplicative perturbation
which is useful for modelling deflation in triangular matrices. Let

Bu\
B22 J

be a block triangular matrix of order n, and let the perturbed matrix be
DB or BD, where

is partitioned commensurately with B.

Theorem 7.2 The singular values <TJ of DB, or BD, satisfy

If in addition B is nonsingular, then

Wi ~ <Ji\ ^ 1 11 v\\
max -—. < - \\X .

l<i<n yCTjCTj Z
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Proof. The first inequality (Eisenstat and Ipsen 1995, Lemma 5.1) follows
from Theorem 6.1,

and from

= \\D-l\\<l

The second inequality (Li 1994a, Corollary 4.1) follows from Theorem 6.5.

•
Now look at a perturbed matrix that is a deflated version of the block

triangular matrix B,

(Bn
B~\ B22J-

The following bound is the same as the one in Corollary 4.1, which was
derived in the context of additive pertubations.

Theorem 7.3 If Bn or B22 are nonsingular, then the singular values of
B and B satisfy

10i - 0 i | < 0"i min

Proof. (See Eisenstat and Ipsen (1995), Theorem 5.2.) This follows directly
from Theorem 7.2. •

Let's see what happens for bidiagonal matrices. We write the bidiagonal
matrix and its perturbation so as to highlight the action,

B=(Bn ^ ) , B=(B" ) .
\ D22 J \ -D22/

Both matrices are bidiagonal, and B is equal to B, except for the off-diagonal
element in row j and column j ; + 1, which is equal to zero. Application of
Theorem 7.3 to B and B produces a bound similar to the one in Corol-
lary 4.3.

Theorem 7.4 If B and B are nonsingular, then

where

Proof. See Eisenstat and Ipsen (1995), Theorem 5.5. •

This bound, like Corollary 4.3 in the context of additive perturbations, can
be used to justify Convergence Criterion 1 in the Golub-Kahan algorithm
with zero shift (Eisenstat and Ipsen 1995, Corollary 5.6).
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7.3. Rank-revealing decompositions

A rank-revealing decomposition is a cheap imitation of a singular value de-
composition. It can serve as an intermediate step in the high-accuracy com-
putation of a singular value decomposition. Passing through a rank-revealing
decomposition on the way to a singular value decomposition allows one to
represent all errors in terms of multiplicative perturbations (Demmel et al.
1997, Section 3).

Consider an m x n matrix B, m > n, of rank r. Decompose B = XDY*
where X is m x r, Y is n x r, and D is diagonal of order r and r < n.
This means D is nonsingular, and X and Y have full column rank. The
decomposition B = XDY* is a rank-revealing decomposition of A it X and
Y are well conditioned, that is, if

K(X) = \\X\\ ||*t|| and K{Y) = \\Y\\ \\Y*\\

are close to one (Demmel et al. 1997, Definition 2.1).
A singular value decomposition qualifies as the luxury edition of a rank

revealing decomposition because X and Y are orthogonal, hence perfectly
conditioned. Gaussian elimination with complete pivoting may be a more
affordable model. Here X = P\L and Y — UPU, where Pi and Pu are per-
mutation matrices, L is unit lower triangular and U is unit upper triangular.
Because all entries of L and U are bounded by one in absolute value, X and
Y tend to be well conditioned.

Suppose the computed version of our rank revealing decomposition is B =
XDY*. If the elements of the diagonal matrix D have high relative accuracy,
and X and Y have high norm-wise accuracy, then the singular values <7j of
B have small relative error.

Theorem 7.5
b

If, for some 0 <

then

where

Let

= D

e<l

|A

4

a
a

V

A,

= e(2-

X = X +

ll̂ ll <
11*1 ~

<5"-j| < <7j (S

f- e) max{«

£;, Y =

ll̂ ll
ll̂ l

!ri + V2),

•JX),K(Y)\.

Proof. (See Demmel et al. (1997), Theorem 2.1.) The idea is to express A,
E and F as multiplicative perturbations. Since X has full column rank, it
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has a left-inverse X^ and we can write

B = (X + E)DY* = (I + EX])XDY* = Dx XDY*,

where D\ = / + EX^ is a multiplicative perturbation and

Similarly one can show B = D1BD2, where

\\D2\\ <l + K(Y)(2e + e2).

Application of Theorem 6.1 gives the desired bound. •

Therefore, if X and Y are well conditioned the relative error in the sin-
gular values of B is proportional to the accuracy e of the rank-revealing
decomposition. Note that the error bound depends on K(X) and K(Y) but
not on K(D). That's because of the stricter requirement for the perturbation
A of D, which must be a component-wise relative perturbation.

8. The end

We have seen that many absolute perturbation bounds imply relative bounds.
Examples include the bounds by Bauer and Fike, Hoffman and Wielandt,
and Weyl. So there is no question of existence. Relative error bounds always
exist, for any matrix and for any perturbation.

Like absolute bounds, relative bounds become stronger when the matrices
have structure. A Weyl-type bound for Hermitian positive-definite matrices,
for instance, is stronger than a Bauer-Fike-type bound for diagonalizable
matrices. In contrast to absolute bounds, though, relative bounds can im-
pose more stringent conditions on the matrices to achieve the corresponding
bound. For example, most relative bounds for additive perturbations require
that the original matrix be nonsingular.

Therefore relative error bounds are not necessarily stronger than absolute
error bounds. They just rely for their accuracy on different perturbations.
Consider eigenvalues of normal matrices, for instance. A small absolute
perturbation E guarantees a small absolute error, while a small relative
perturbation, such as

p -1 /2^ -1 /21 , o r p-D^D^l

guarantees a small relative error. This means that before requesting high
relative accuracy you'd better be sure to have a small relative perturbation.

Several theses have been written on the subject of relative error bounds in
the context of Jacobi methods for computing singular values (Drmac 1994),
eigendecompositions of Hermitian matrices (Slapnicar 1992), and eigenval-
ues of skew-symmetric matrices (Pietzsch 1993), as well as fast algorithms
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for computing eigendecompositions of real symmetric tridiagonal matrices
(Dhillon 1997).

We have omitted the following issues in our discussion of relative error
bounds:

• generalized eigenvalue problems (see Barlow and Demmel (1990), Hari
and Drmac (1997), Li (1994a), Veselic and Slapnicar (1993))

• sensitivity of eigenvalues and singular values to perturbations in the
factors of a matrix (see Dhillon (1997), Demmel et al. (1997), Parlett
(1997), Veselic and Slapnicar (1993))

• relative errors in the form of derivatives when the matrix elements
depend smoothly on a parameter (see Deift et al. (1991), Section 2,
Parlett (1997), Theorem 1).

It is also possible to derive relative perturbation bounds for invariant
subspaces and singular vector spaces. These are generally bounds on the
angle between an exact and perturbed invariant subspace in terms of a rel-
ative eigenvalue separation as opposed to an absolute eigenvalue separation.
Many of the papers cited here also discuss bounds for subspaces. Papers
solely dealing with subspaces include, among others, Eisenstat and Ipsen
(1994), Li (19946), Mathias (1997a), Mathias and Veselic (1995), Slapnicar
and Veselic (1995), and Truhar and Slapnicar (1997).
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